Error! No text of specified style in document.
19
Error! No text of specified style in document.

3GPP TSG-SA5 Meeting #150
S5-235872

Goteborg, Sweden, 21 - 25 August 2023
Source:
Nokia, Nokia Shanghai Bell

Title:
DP on JSON expressions
Document for:
Approval

Agenda Item:
6.5.1.5 eSBMA_WoP#5
1
Decision/action requested

Endorse the text below as starting point for Jex work
2
References

None.
3
Rationale

None.
4
Detailed proposal

The following text is proposed to be endorsed as starting point for specifying Jex.

9
Jex
9.1
Introduction

Information can be represented in a structured way using markup languages. Well-known and widely used markup languages are for example XML and JSON.

It is often required to identify distinct portions of XML or JSON documents. For XML, XPath has been designed for that purpose. XPath is very powerful and includes capabilities for conditional node selection with predicates. XPath expressions can select one or more portions of an XML document.

JSON Pointer serves a similar purpose. However, its capabilities are limited compared to XPath. For example, JSON Pointer expressions can identify only a specif node or subtree of a JSON document and not multiple nodes or subtrees. Furthermore, conditions are not supported in the information selection process.

This calls for a notation applicable to JSON documents with more advanced features than JSON Pointer. This notation is called Jex. It is inspired by and based on XPath.

Even though XPath was originally designed to select one or more nodes of an XML document, XPath expressions operate on documents based on a conceptual data model, the XPath data model. A mapping from the XML Information Set to the XPath data model is provided in Annex B of XPath 1.0 [15].

The main purpose of the Jex specification is to provide a mapping from a JSON document to the XPath data model. With this in place XPath expressions are (indirectly) applicable to JSON.

This specification will also introduce a few profiles for XPath. These profiles are designed to provide the functionality required for network and service management.

Clause 9.2 provides a short review of the XPath data model. Clause 9.3 defines the mapping of a JSON document to the XPath data model, and clause 9.4 introduces a few XPath profiles. Annex A demonstrates to use of Jex for network management tasks.

Readers should be familiar with XPath 1.0 [15].

9.2
XPath data model

The XPath data model is described in clause 5 of W3C Xpath1.0 specification [15]. It is a conceptual model without formal notation.

The model consists of nodes with relationships between them. There are seven types of nodes defined: root node, element node, text node, attribute node, namespace node, processing instruction node, comment node.

Note that the data model for XPath 2.0 [xx] and XPath 3.1 [xy] is described in XQuery and in XPath Data Model 3.1 [15]. This model is not used in this specification.

9.3
Mapping of JSON to the XPath data model

9.3.1

Supported JSON documents

Only documents whose value is a JSON object are supported.

9.3.2

Mapping of the JSON document

A JSON document is mapped to the root node. The root node has no name.

Editor's note: Discuss mapping of the "top-level" JSON value.
Edito's note: Discuss mapping of numbers and strings.
9.3.3

Mapping of the name of name/value pairs

If the value of the name/value pair is a string, a number, one of the tree literal names (true, false, null), or a JSON object, then the name of the name/value pair is mapped to one element node. The name of the element node is equal to the name of the name/value pair.

If the value of the name/value pair is a JSON array, then the name of the name/value pair is mapped to a specific number of element nodes. The names of these element nodes are all identical and equal to the name of the name/value pair. The number of element nodes depends on the data types of the array items and is determined as follows:

· For each array item there is one element node if the array item is a scalar or a JSON object.

· If the array items are arrays itself, then there is an element node for each array item of the subordinate arrays.

The order of element nodes is the same as the order of the array items in the corresponding JSON array or JSON arrays.

9.3.4

Mapping of the value of name/value pairs

9.3.4.1
Mapping of scalar values

A scalar value is a string, a number, or one of the tree literal names (true, false, null). These values are mapped to text nodes.
Editor's note: It is ffs if the text node should not have an attached type (a string, a number, or one of the tree literal names).This would be a deviation from the XPath 1.0 data model.
A text node coming from the value of a mapped name/value pair is the child of the element node coming from the name of the mapped name/value pair. Vice versa, the element node coming from the name of the mapped name/value pair is the parent of the text node coming from the value of the mapped name/value pair.

Example:

	"a": 1
	<a>1

9.3.4.2
Mapping of a JSON object

A JSON object consists of unordered name/value pairs. These name/value pairs are mapped as described in clause 9.3. The element nodes coming from the name/value pairs of a JSON object shall be considered as an unordered list of element nodes.

An element node coming from the name/value pair of a JSON object is a child of the element node coming from the name of the name/value pair, whose value is the JSON object. Vice versa, the element node coming from the name of the name/value pair, whose value is a JSON object, is the parent of the element nodes coming from the name/value pairs of the JSON object.

Example:

	"a": {

 "b": 1,

 "c": 2

}
	<a>
 1

 <c>2</c>

9.3.4.3
Mapping of a JSON array
A JSON array consists of ordered array items. Each array item can be a string, a number, one of the tree literal names, a JSON object, or a JSON array. The array items are mapped as described in clause 9.3. The element nodes coming from the array items shall be ordered in the same way as the array items.

An element node coming from an array item of a JSON array is a child of the element node coming from the name of the name/value pair, whose value is the JSON array. Vice versa, the element node coming from the name of the name/value pair, whose value is a JSON array, is the parent of the element nodes coming from the array items of the JSON array.

Example:

	"a": [

 1,

 2

]
	<a>1
<a>2

	"a": [

 [1, 2],

 [3, 4]

]
	<a>1
<a>2
<a>3
<a>4

	"a": [

 1,

 [2, 3],

 {"c": 4}

]
	<a>1
<a>2
<a>3
<a>
 <c>4</c>

9.3.5
XPath data model concepts required by JSON

A JSON document is mapped to root nodes, element nodes and text nodes. Attribute nodes, namespace nodes, processing instruction nodes and comment nodes have no equivalent in JSON.
The concept of document order is applicable only for element nodes coming from JSON arrays.

The concept of variables is not used in Jex..
9.3.6
Additional considerations for JSON definitions of NRMs
When working with the JSON definitions of a NRM the following statements are always true:

· The items of an array have the same type.

· Array items can be only scalars or JSON objects.

Editor's note: Explain concept of Accessible tree of an NRM
Editor's note: Explain that difference between object and attributes disappears in JSON.
9.4
Jex expressions

9.4.1
Introduction
Jex uses the same syntax, the same concepts and the same definitions as XPath. Jex expressions are a subset of XPath expressions. All subsets support only the abbreviated syntax. The output of a Jex expression is always a node set.
Editor's node: It is ffs if the output of a Jex expression should also influde true and false. This would largely increase the number of uses cases where these expressions could be used.
Different subsets are defined in the following clauses. All subsets have the same allowed location path expression. Subsets differ in the capabilities of the predicate. A subset is also called Jex profile.

9.4.2
Evaluation context
Jex expressions are evaluated in a context, that is a subset of the XPath evaluation context. The Jex context includes

· a node (the context node)

· a pair of non-zero positive integers (the context position and the context size)

· a function library

9.4.3
The location path
A Jex expression is an absolute location path. An absolute location path consists of "/", optionally followed by a relative location path. A "/" by itself selects the root node of the document.
AbsoluteLocationPath ::= '/' RelativeLocationPath
A relative location path consists of a sequence of one or more location steps separated by "/".
RelativeLocationPath ::= Step | RelativeLocationPath '/' Step
Only the child axis is supported. The child axis is the default axis and omitted in the abbreviated syntax of a location step. The location step contains only a node test and an optional predicate.
Step ::= NodeTest Predicate?

The node test is a name test. The asterisk "*" is supported and selects all element children of the context node.
NodeTest ::= NameTest
NameTest ::= '*' | QName
The "QName" is either a class name, the string "attributes", an attribute name, or an attribute field name.
Editor's note: EBNF for QName tbd.

The predicate is an expression encapsulated in rectangular brackets.

Predicate ::= '[' PredicateExpr ']'

The capabilities of the predicate expression differ for the different Jex profiles.

Editor's note: Add XPath 2.0 capability to select multiple nodes with a sequence, e.g. "…/(a,b)".
9.4.4
Jex basic
Predicates are used for two purposes in this profile: selecting element nodes representing managed object instances based on the value of their naming attribute "id" and selecting an array item based on its positional index.

PredicateExpr ::= MoiSelector | ArrayItemSelector

MoiSelector ::= "id=" String
ArrayItemSelector ::= Integer
Integer ::= [0-9]+
String ::= '"' [^"]* '"'
This profile allows to select managed object instances, attributes, attribute fields and attribute elements of multi-valued attributes. Conditional selection is not supported.

Editor's note: For JSON, only double quotes are supported. JSON escaped/unescaped characters might be added in the EBNF definitions.
Editor's note:Clarify if the first positional index is 0 or1. For XPath it is 1, for JSON Pointer it is 0.
3GPP

